

DPG-Frühjahrstagung 2013 in Dresden:

T78.9: Investigations of Final States with Light Anti-Nuclei at the Belle Experiment

Diego Semmler, Wolfgang Kühn, Sören Lange and Milan Wagner

Outline

Investigations of Final States with Light Anti-Nuclei at the Belle Experiment

- The Belle Detector
- The Basic Idea
- Υ -Decays into \overline{d}
 - Continuum production
 - Resonant production
- Conclusion

Asymmetric e⁺e⁻-collider

The Basic Idea

- Studying formation of anti-nuclei in e⁺e⁻collisions
 - Antimatter cleaner than matter
 - Cleaner than nucleus-nucleus collisions
- Inclusive decays
 - → $\Upsilon(1S),\,\Upsilon(2S)\to\overline{d}\,+\,anything$
 - → $\Upsilon(3S) \rightarrow \overline{d} + anything$ (new)

Processes

- Problem: Momentum distribution a priori unknown
 - No Monte Carlo simulation available
 - Solution will be presented
- Too much background by identification via Bethe Bloch plot
 - Identification via charge-mass-plot

Bethe Bloch

Calculate Charge

• Calculate $\frac{dE}{dx}$ from the Bethe-Bloch-formula:

- Calculate Mass
 - Magnetic rigidity R_M measured instead of momentum p:

$$R_M \equiv \frac{p}{Q}$$

$$m(R_M,\beta) = \frac{R_M}{c} \cdot \frac{Q}{1e} \cdot \sqrt{\frac{1}{\beta^2} - 1}$$

$$\Delta m = m \sqrt{\left(\frac{\Delta R_M}{R_M}\right)^2 + \left(\frac{\Delta \beta}{\beta} \left(\frac{1}{1-\beta^2}\right)^2 + \left(\frac{\Delta Q}{Q}\right)^2}$$

• For $\beta \approx 1$ $\Delta m \rightarrow \infty$

Just applicable for slow particles

The QM-Plot

Q vs. m

Υ Decays

- Within 3σ in mass and charge (red circle)
 → d candidate
- Within 6σ in mass and 3σ in charge (black ellipse)
 - → Background +
 - Will be subtracted
- For continuum:
 - Additional
 cut at +1.5σ
 of charge
 (green line)

$\overline{\mathbf{d}}$ Identification

- $e^+e^- \rightarrow \overline{d} + anything$ VS. $e^+e^- \rightarrow \Upsilon \rightarrow \overline{d} + anything$
- Procedure
 - 1.Subtract Background
 - Estimated in a side band
 - 2.Subtract continuum data
 - Receive resonant fraction
 - 3.Momentum dependent efficiency correction

- Procedure (continued)
 - 4. Certain range of momentum covered
 - Make an estimation about uncovered part
 - Momentum distribution agrees with fireball model
 - Maxwell Boltzmann distribution
 - 5.Calculate total yield
 - 6.Calculate branching ratio

d Identification

- Calculate p_{cms}
 depended
 efficiency
 of deuterons
 - 1.Simulate $\Upsilon \rightarrow d + p + n$
 - 2.Count simulated events per bin
 - 3.Count correct identified deuterons per bin4.Efficiency is ratio

Continuum

Y Decays

Cross Check

Y Decays

Cross Check

Conclusion

- The QM-Plot is an "All-In-Once"-Method to find light nuclei and anti nuclei
- p, \overline{p} , d, \overline{d} and t have been identified
- d from continuum, Υ(1S)- and Υ(2S)decays have been observed.
- Goal: Get the branching ratio for $\Upsilon(3S) \rightarrow d + anything$
- Belle II will have a factor 50 higher statistics

Thanks for your attention

Also thanks to my work group, especially Milan Wagner and Sören Lange for supporting me.

- Formulas: Q M
- General plots: P_{1ab}-dEdx
- Extended: Sources History
- Cuts: Vertex Muon Cherenkov ß vs. m

QMexp7 Y(4S) Y(5S) Momentum Beta

dE/dx vs. m

Cherenkov

- Vertex ß-dEdxDetail • Vertex plots:
- Energy plots: Gamma1 Gamma2 Energy Energy vs. m
- ß-dEdx • More plots:
- Other Cut order Beta Vertex Momentum Muon

Sources

[FH73]S. C. Frautschni, C. J. Hamer:	
	Effective Temperature of resonance Decay in the statistical
	Bootstrap Model
	Il Nuovo Cimento VI. 13 A N. 3 (01.02.1973)
[ARG89]	ARGUS Collaboration:
S	Study of Antideuteron Production in e+e- Annihilation at 10 GeV
	Center-of-Mass Energy
	Physics Letters B, Volume 236, Issue 1, p 102–108 (08.02.1990)
[FOP05]	Norbert Herrmann:
	Search for ppnK— deeply bound states with FOPI
	EXA05, Vienna
[CLE07]	CLEO Collaboration:
	Antideuteron production in Y(nS) decays and the nearby
	continuum
	Physical Review D 75 (2007), arXiv: hep-ex/0612019
[STA10]	STAR Collaboration:
	Observation of an Antimatter Hypernucleus
	arXiv:1003.2030v1 [nucl-ex] (10.03.2010)
[PDG10]	Particle Data Group:
	Particle Physics Booklet (2010)

Light Anti-Nuclei

- Are the anti-deuterons produced by certain decays?
- Identify decays into anti-deuterons with an invariant mass plot
- Interesting physics may happen in different decays:
 - Jook for states seen in normal matter:
 - Kaonic cluster with 3.159 GeV at FOPI
 - Hyper-³H seen in Au-Au-collisions at Star
 - Exited ³He

History

Searches for antideuterium in the past

1989: ARGUS found 21 d candidates at DESY Diego Semmler, JLU Gießen

2006: CLEO found 338 d candidates at the Cornell Electron Storage Ring

Vertex

beta vs. dE/dx

Gamma2 {Q>-1.1 && Q<-0.85 && m>0.9 && m<1.05 && Equality == 2 && Multi == 1}

Gamma2 {Q>-1.1 && Q<-0.85 && m>0.9 && m<1.05 && Equality == 2 && Multi == 1}

beta vs. dE/dx

beta vs. dE/dx

Matter

Antimatter

Peaks are artificially generated.

dEdx vs. m

Q vs. M

Q vs. m

Vertex Cut

After the cut:

Q vs. m

Reason: Eject particles from beam pipe interactio Keeping condition: dr < 0,15 mm and dz < 15 mr

Q vs. m

Muon-Veto

After the cut:

Q vs. m

 Reason: Eject muons very cleanly
 Keeping condition: No correlated hit in the KLM-detector

Q vs. m

Ejected:

Background Momentum Cut **Ejected**:

Q vs. m

After the cut:

Q vs. m

- Reason: Particles with too small p' can't hit the TOF
- Keeping condition: $p_{lab} > 0,3^{\frac{GeV}{c}}$

Background Cherenkov-Veto **Ejected**:

After the cut:

Q vs. m

- Reason: Particles with Cerenkov radiation are too fast
- Keeping condition: No correlated signal in the Cerenkov-detector

ß vs. m

 $\frac{dE}{dx}$ - β -Cut

After the cut:

Q vs. m

- Reason: Fast particles have a large error
- Keeping condition: $\beta < 0.68$ and $\frac{dE}{dx} > 1.85 \frac{keV}{cm}$

Background II

 $\frac{dE}{dx}$ - β -Cut **Ejected:**

After the cut:

Q vs. m

- Reason: Fast particles have a large error
- Keeping condition $\beta < 0.68$ and $\frac{dE}{dx} > 1.85 \frac{keV}{cm}$

Background II

Vertex Cut

Q vs. m

After the cut:

Q vs. m

- Reason: Sort out particles from beam pipe interaction
- Keeping Condition: dr < 0,15 mm and dz < 15 mm

Background II Momentum Cut **Ejected**:

Q vs. m

After the cut:

Q vs. m

Background II

Muon-Veto

After the cut:

Q vs. m

 Reason: Sort out muons very cleanly
 Keeping Condition: No correlated hit in the KLM-Detector

Background II Cherenkov-Veto **Ejected**:

After the cut:

Q vs. m

Q vs. m

- Reason: Particles with Cerenkov radiation are too fast
- Keeping Condition: No signal in the Cerenkov-Detector

